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In this paper, we report results for the wave packet dynamics in a class of quasiperiodic chains consisting of
two types of weakly coupled clusters. The dynamics are studied by means of the return probability and the
mean-square displacement. The wave packets show anomalous diffusion in a stepwise process of fast expan-
sion followed by time intervals of confined wave packet width. Applying perturbation theory, where the
coupling parameter v is treated as perturbation, the properties of the eigenstates of the system are investigated
and related to the structure of the chains. The results show the appearance of nonlocalized states only in
sufficiently high orders of the perturbation expansions. Further, we compare these results to the exact solutions
obtained by numerical diagonalization. This shows that eigenstates spread across the entire chain for v�0,
while in the limit v→0 ergodicity is broken and eigenstates only spread across clusters of the same type, in
contradistinction to trivial localization for v=0. Caused by this ergodicity breaking, the wave packet dynamics
changes significantly in the presence of an impurity offering the possibility to control its long-term dynamics.
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I. INTRODUCTION

Understanding the relations between the spectral proper-
ties of a given Hamiltonian and the dynamics of wave pack-
ets which are governed by it, remains one of the elementary
questions of quantum mechanics that still poses significant
challenges, further emphasized by the discovery of
quasicrystals.1–3 While spectra of many Hamiltonians de-
compose into a pointlike part and an absolutely continuous
part accompanied by bounded �localized� and unbounded
�delocalized or extended� eigenstates, there exists a large va-
riety of Hamiltonians whose spectra, for certain values of the
parameters, are neither pure pointlike nor absolutely continu-
ous, nor a combination of both. In this case, the spectrum
contains a singular continuous part, and eigenstates are often
found to be multifractal. Examples are Harper’s model of an
electron in the magnetic field,4 the kicked rotator,5,6 as well
as the Anderson model of an electron in a disordered
medium.7 In the case of an electron in a one-dimensional
quasiperiodic system, as studied in this paper, many ex-
amples lead to spectra which are purely singular continuous
as well.8–10

To address the above-mentioned challenge, we investigate
wave packet dynamics in one-dimensional quasiperiodic
chains by numerical simulation as well as perturbation
theory, and relate the results to the hierarchical properties of
these chains. The content of this paper is organized as fol-
lows. At first we introduce the construction rule and structure
of the chains in Sec. II. Section III then focuses on numerical
results for the time evolution of wave packets. To obtain a
better understanding of the properties of wave packet spread-
ing and localization, we apply perturbation theory in Sec. IV
and further study the influence of an impurity on the wave
packet dynamics in Sec. V, followed by a brief summary of
our results.

II. QUASIPERIODIC CHAINS WITH GOLDEN, SILVER,
OR BRONZE MEANS

In this paper we study one-dimensional quasiperiodic sys-
tems constructed by the inflation rule

P = �w → s

s → swsn−1� �1�

iterated a times starting from the symbol w, where the letter
w denotes a weak bond and s a strong bond. We refer to the
resulting sequence after a iterations as the ath-order approx-
imant Ca with the length fa given by the recursive equation
fa= fa−2+nfa−1 and f0= f1=1. Depending on the parameter n
the inflation rule generates different so-called metallic
means, i.e., the lengths of two successive sequences satisfy
the relation

lim
a→�

fa

fa−1
= � ,

where � is an irrational number with the continued fraction
representation �n̄�= �n ,n ,n , . . .�. For example, n=1 yields the
well-known Fibonacci sequence related to the golden mean

�Au= �1̄�= �1+�5� /2, the case n=2 corresponds to the oc-

tonacci sequence with the silver mean �Ag= �2̄�=1+�2, and
for n=3 one obtains the bronze mean

�Bz= �3̄�= �3+�13� /2.11

Due to the recursive inflation rule in Eq. �1�, these quasi-
periodic chains possess a hierarchical structure, which is
more clearly visible by using the alternative construction rule
Ca=Ca−1Ca−2�Ca−1�n−1, yielding the same quasiperiodic se-
quences for a�2 with C0=w and C1=s. Further, for given n,
the structure of these chains consists of only two types of
clusters with strong interactions, sn and sn+1, which are sepa-
rated by a single weak bond. The latter property can be re-
lated to the eigenstates of the system, whereas the hierarchi-
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cal property has a crucial influence on the transport
properties for weak coupling. We discuss both aspects in
detail later.

To obtain the quantum-mechanical eigenstates of these
systems, we only consider nearest-neighbor hopping and
hence obtain the tight-binding Hamiltonian

H = �
l=0

fa

	l
tl,l+1�l + 1	 + �
l=0

fa

	l
�l�l	 , �2�

represented in the orthogonal basis states 	l
 associated to a
vertex l. The off-diagonal matrix elements represent the ki-
netic energy in the tight-binding model. The diagonal ele-
ments of the Hamiltonian matrix, which represent the poten-
tial energy of the sites, are set to zero ��l=0� because no
energetic disorder is taken into account for the studied sys-
tems.

The hopping parameters t are chosen according to the
letters s �strong� and w �weak� of the quasiperiodic sequence
C with ts=1 and tw=v �0�v�1�. Thus, the number of sites
of the ath-order approximant is given by fa+1. This model
can be interpreted as describing an electron hopping from
one vertex of the quasiperiodic chain to a neighboring one,
and the aperiodicity is given by the underlying quasiperiodic
sequence of couplings. We then have to solve the discrete
time-independent Schrödinger equation

H	�i
 = Ei	�i


by diagonalization of the Hamiltonian matrix of Eq. �2�. Ap-
plying free boundary conditions, we obtain fa+1 eigenstates
	�i
=�l=0

fa �l
i	l
 and the corresponding energy values Ei.

III. TIME EVOLUTION OF A WAVE PACKET ON
QUASIPERIODIC CHAINS

As outlined in the introduction, the dependency of trans-
port properties on the spectral properties of the Hamiltonian
is not yet fully understood, and thus the investigation of
transport properties in quasiperiodic systems continues to be
of special interest. In this section, we study the wave packet
dynamics in such systems, in particular in the limit of weak
coupling where v	1. The results will then be related to the
properties of the eigenstates using a perturbation-theory ap-
proach in the following section.

We investigate the transport properties by means of the
time evolution of a wave packet 	

=�l=0

fa 
l	l
, which is
initially localized at the center of the quasiperiodic chain,
i.e., 
l�t=0�=�ll0

with l0= �fa /2�. It is represented in the ba-
sis of the orthonormal eigenstates 
l�t�=�i�l0

i �l
i�t�. The so-

lutions of the time-dependent Schrödinger equation then fol-
low by the separation approach with �l

i�t�=�l
ie−iEit.

Besides calculating the expansion of the wave packet in
space, a more detailed analysis can be obtained by the com-
putation of the temporal autocorrelation function �also
known as return probability�

C�t� =
1

t
�

0

t

	
l0
�t��	2dt�

and the mean-square displacement �also called the width�

d�t� = �
l=0

fa

	l − l0	2	
l�t�	2�1/2

of the wave packet. It is known that a particle’s return prob-
ability decays with a power law C�t�� t−�, where � is
equivalent to the scaling exponent of the local density of
states,12–15 and �=1 refers to ballistic motion. It is further
known that the spreading of the width d�t� of the wave
packet shows anomalous diffusion, i.e., d�t�� t� with
0�1.16–20 Here �=0 corresponds to the absence of dif-
fusion, �=1 /2 to classical diffusion and �=1 to ballistic
spreading.

In addition, the wave packet dynamics exhibits multiscal-
ing, where different moments of the wave packet scale with
different, nontrivially related exponents �.21–26 While wave
packet localization implies a pure point spectrum, the con-
verse is not true, and the more refined notion of semiuniform
localization is necessary.27 However, the exact relations be-
tween particle dynamics and singular or absolutely continu-
ous spectra are less well understood. As a rule of thumb,
systems with singular continuous spectra exhibit anomalous
diffusion, while absolutely continuous spectra may lead to
either anomalously diffusive or ballistic dynamics.21,28

Consequently, the systems considered here should show
anomalous diffusion with the mentioned power-law depen-
dency d�t�� t� due to their singular continuous spectra,20,29

which is confirmed by our numerical results. Figures 1 and 2
show the development of the mean-square displacement of
the wave packet over time for the golden, silver, and bronze
mean models in the regime of strong quasiperiodic modula-
tion �v�0.3�. While the asymptotic behavior can be charac-
terized as anomalous diffusion, e.g., with scaling exponents
not larger than �Au�0.41, �Ag�0.39, and �Bz�0.40 ob-
tained for v=0.2 �for higher values of v and the associated
values of � see Yuan et al.20�, there are intervals where d�t�
grows according to a power law d�t�� t�� with a constant
�v-independent� exponent �� which are intercepted by flat
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FIG. 1. �Color online� Evolution of the width d�t� of a wave
packet initially localized in the middle of the silver mean chain C10

Ag

with 3364 sites, for several small values of v. The insets show two
magnified steps for v=0.03.
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regimes. As demonstrated by the insets in Fig. 1, in these flat
regimes d�t� strongly oscillates in a self-similar manner, re-
flecting the hierarchical structure of the system. Neverthe-
less, the width d�t� remains bounded from above by a con-
stant.

While for the silver mean chain the steps in log d�t� have
about the same size for a particular value of v, we observe
small as well as large steps for the golden and bronze mean
models. This may be caused by the different underlying in-
flation rule, which in the case of the octonacci chain leads to
a symmetric sequence �the sequence is palindromic for this
case� and to asymmetric ones for the other two systems.
However, as a general trend we observe an increase in the
logarithm of the time distance between successive steps with
decreasing coupling constants v in all three models.

The same behavior can also be observed for the autocor-
relation function C�t�, as shown in Fig. 3. All three quasip-
eriodic chains show a stepwise behavior of the return prob-
ability C�t�, where the minimum value of C�t� depends on
the system size and on the number of w bonds. Again the
stepwise process is clearly visible, where a step here consists
of the decrease in C�t� with a power law with v-independent
exponent ��, followed by a time interval of constant return
probability. The time intervals for the power-law behavior
and the flat parts of both quantities C�t� and d�t� are in cor-
respondence with each other. Further, for large time the re-
turn probability and wave packet width are bounded by a
constant due to the finite size fa of the system.

A more detailed inspection of the wave packet dynamics
reveals that breathing modes are responsible for the oscilla-
tions, while the wave packet spreading itself is limited to
low-amplitude leaking out of the region in which it is con-
fined. Eventually, the wave packet expands fast to reach the
next level of the hierarchy, before the whole process repeats.
This behavior is even more evident in the time evolution of
the probability density of such wave packets, as shown in
Fig. 4. At first up to t=e14 in Fig. 4 the wave packet is
confined in a narrow range around its initial position in the
environment of the approximant C7

Ag and oscillates back and
forth in this range corresponding to the strong oscillations of
d�t�. Then, between t=e16 and e18 the wave packet expands
almost ballistically and a significant probability density is

found in the neighboring C7
Ag sequences �cf. t�e18�. A simi-

lar behavior can be already seen for the previous levels of the
hierarchy �cf. the panels up to t=e10 with those for t�e12 in
Fig. 4�, where the wave packet can be observed to spread
from the central C5

Ag structure to a threefold C5
Ag sequence

occurring in the middle of the central C7
Ag chain.

This indicates that the values of the flat regimes in d�t�
and C�t� are directly related to the chain structure and do not
depend on the coupling parameter v. In particular, we can
give a rough estimate of the corresponding values of d�t� for
the plateaus by assuming that the wave packet is uniformly
distributed in a confined region at the center of the chains.
For an approximant Ca

Ag the center of the octonacci chain is
made up from the threefold sequences Co

AgCo
AgCo

Ag with
o=a−2b �b�N, 0oa�. Confining the wave packet to
these regions we obtain for the approximant C10

Ag of Fig. 1 the
values d�t�=2.9,15,86,500 for o=2,4 ,6 ,8, respectively.
Although the wave packet is far from being uniformly dis-
tributed and some parts of the wave packet can also be found
outside the confined region �cf. Fig. 4�, our assumption re-
sults in a good reproduction of the plateau values observed in
Fig. 1.

This spreading of the wave packet width to the next level
can be described by a power law d�t�� t�� with exponents
�Au� �0.88, �Ag� �0.85, and �Bz� �0.98 determined for the
smallest coupling constant v=0.03 considered here. Comput-
ing the results also for all six other qualitatively different
initial positions of the wave packet for the octonacci chain
we obtained about the same scaling exponents ��. For in-
stance, for the octonacci chain we found ��=0.81–0.85,
where some of these differences might be caused by fluctua-
tions of the width d�t� which are present in the regime of
strong expansion and make fitting difficult. These scaling
exponents tend toward the exponents obtained for v→1,20

which indicates that the fast expansion is not governed by
the weak coupling, but rather a kind of resonance between
the different levels of the hierarchy. Further, for the return
probability we find the exponents �Au� �0.71, �Ag� �0.71, and
�Bz� �0.76, which are again relatively close to the exponents
for v→1.20,28 However, these values of the scaling exponent
�� might differ from the exact result, because in one dimen-
sion we cannot rule out the influence of subdominant loga-

10-1

100

101

102

103

100 102 104 106 108 1010 1012 1014 1016

m
ea

n
sq

ua
re

di
sp

la
ce

m
en

td
(t

)

time t

v = 0.3
v = 0.2
v = 0.1

v = 0.05
v = 0.03

10-1

100

101

102

103

100 102 104 106 108 1010 1012 1014

m
ea

n
sq

ua
re

di
sp

la
ce

m
en

td
(t

)

time t

v = 0.3
v = 0.2
v = 0.1

v = 0.05
v = 0.03

(b)(a)

FIG. 2. �Color online� Same as Fig. 1, but for �a� the golden mean model C18
Au with 4182 sites and �b� the bronze mean model C8

Bz with
5117 sites.
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rithmic contributions for the considered short-time intervals
in the steplike process.28

Similar behaviors for d�t� and C�t� have been reported
before for the Fibonacci chain with strong quasiperiodic
oscillations.28,30 Wilkinson and Austin found the same step-
like process when studying the spreading of a wave packet
for Harper’s equation of an electron in a magnetic field.23

Based on a qualitative model of the wave packet spreading in
the semiclassical approximation and on numerical simula-
tions, they argued that a hierarchical splitting of the energy
spectrum into constant-width bands leads to a steplike be-
havior with ��=1, which is smoothed due to the �broad�
distribution of band widths.

The value ��1 observed here suggests that there is a
distribution of band widths in the energy spectrum even for
v	1. The energy levels of the singular continuous spectrum
for 0v1 cluster in certain energy ranges and form bands
with different widths �cf. Sec. IV�, but all the band widths
approach zero in the limit v→0.31,32 This suggests that the
self-similar spreading of the wave packet is only an approxi-
mate description of a more general multiscale dynamics.

Further, the self-similarity of quasiperiodic sequences was
previously used in a renormalization-group perturbative ex-
pansion that provided a great deal of insight into the eigen-
state properties,33 and showed multiscaling of wave packet
dynamics.24 In the following section we focus on ergodic
rather than hierarchical properties.34 By an elementary analy-
sis of the perturbation theory of degenerate levels at v=0 for
small coupling constants v, we show that, on the one hand,
eigenstates delocalize for any v�0, in contradistinction to
�trivial� localization at v=0. On the other hand, in the limit
as v→0, eigenstates delocalize across only one set of clus-
ters containing the same number of atoms, i.e., we obtain a
subcluster localization due to the breaking of ergodicity.

IV. RALEIGH-SCHRÖDINGER THEORY

Raleigh-Schrödinger theory allows the recursive construc-
tion of matrices in subspaces for a degenerate eigenenergy to

a given order p, whose diagonalizations �the secular prob-
lem� yield corrections to the unperturbed eigenenergies.
Within this approach, the Hamiltonian is decomposed into an
unperturbed system H�0� and a perturbation H�1� with
H=H�0�+�H�1�, where the hopping parameter v is
treated as the perturbation yielding H�0�=H�v=0� and
H�1�=H�v�−H�v=0�. Although the accuracy of O�vp+1� of
the expansion to the pth order is not guaranteed, the theory
yields good results for small perturbations and preferably
large separations between the degenerate energy levels. The
first condition is met since we only consider small values of
v and the latter one is satisfied since we found that for the
unperturbed system 	Ei−Ej	�c with cAu=0.41, cAg=0.20,
and cBz=0.11.

For the considered quasiperiodic sequences the results of
such perturbation expansions yield two qualitatively different
types of solutions, depending on the values of p and n due to
the chain structure mentioned in Sec. II. The reason is that
the chain consists of strongly coupled clusters with n+1 and
n+2 atoms, which are weakly connected via the hopping
parameter v. For v=0 we have an unperturbed system with
2n+3 highly degenerate levels, where all eigenstates are lo-
calized on individual clusters. In higher orders of perturba-
tion theory, these localized states then spread first over
neighboring clusters of the same type as the coupling among
the clusters is taken into consideration, and, for a sufficiently
high order, delocalize across the whole chain.

Since the maximal number of letters w between two con-
secutive clusters of length sn+1 is also n+1, the eigenstates of
these clusters delocalize only in order n+1 of the perturba-
tion theory. However, small clusters of length sn are con-
nected by at the most 2 �n�1� or 3 �n=1� weak bonds. More
precisely, the dimension of the secular problem for each type
of cluster separated by not more than q weak bonds, changes
from O�q2� at most for pq to O�fa� for p�q. Only the
latter case allows for multifractal and/or extended states to be
present in the solutions of the perturbed system.

As an illustrating example we analyze the octonacci chain
with n=2. In the unperturbed system there are seven levels,
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FIG. 3. �Color online� Temporal autocorrelation function C�t� of a wave packet initially localized at the center of �a� a golden mean chain
C18

Au with 4182 sites, �b� a silver mean chain C10
Ag with 3364 sites, and �c� a bronze mean chain C8

Bz with 5117 sites. Results are shown for small
coupling parameters v.
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given by Esss
�0�= � ��5�1� /2 and Ess

�0�= ��2,0. Due to the
sequence of the ss and sss clusters, the eigenstates delocalize
only in the second and third orders of the perturbation theory.
In first-order expansion �p=1�, the only correction are six
levels linear in v, splitting off the three Ess

�0� levels, because
·�sswss�· is the only possibility for which two clusters of the
same type are connected by a single w bond. There are also
remaining separate ss clusters, so that the unperturbed Ess

�0�

levels are still present in the spectrum. For p=2, all ss clus-
ters become connected while sss states are still not extended
due to the existence of ·�ssswsswsswsss�· sequences in the
chain. For p=3, states belonging to sss levels delocalize as
well. Figure 5 shows this splitting of the energy levels, where
the solutions obtained by different orders of the perturbation
theory are shown in comparison to the energy levels obtained
by numerical diagonalization of the Hamiltonian H. The re-
sults of the perturbation approach and the exact energy val-
ues are close, although only second-order corrections are
taken into account. In the case of Ess

�0� the second-order cor-
rections seem to overcompensate the error leading to a stron-
ger splitting of the energy levels compared to the exact nu-
merical results.

To investigate the issue of convergence further, we notice
that, even when calculated to all orders of v, the secular
problems for the two types of clusters give solutions that are
inevitably restricted to the clusters of the given type, with

zero component on the clusters of the other type. For various
values of v we check by numerical diagonalization whether
this can be confirmed. Figure 6 shows the total probability
that the particle in an eigenstate �i with an energy Ei will be
on a large cluster sn+1

Psn+1�Ei� = �
l�sn+1

	�l
i	2 �3�

for the golden, silver, and bronze mean model. Figure 6 il-
lustrates how the degenerate eigenvalues for v=0 spread into
wider and wider bands with increasing v. The results imply
that Psn+1 strongly depends on the energy of the correspond-
ing eigenstate for small v, because it is either large for the
states belonging to the sn+1 bands and vanishes for the states
of the sn bands in the limit v→0 or shows the reverse be-
havior. From Fig. 6 we can also observe that there are n+1
bands with high probabilities and n bands with low prob-
abilities, in correspondence with the number of eigenstates
generated by the large and small clusters as obtained by our
perturbation-theory approach. However, for v�0 the prob-
ability Psn+1 is greater than 0 for all energy bands, which
implies that the eigenstates spread over both types of clusters
and thus are ergodic. Here ergodicity denotes the spreading
of eigenstates over both types of clusters.
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FIG. 4. �Color online� Snapshots for the evolution of a wave
packet initially localized at the center of the octonacci chain C9

Ag

with v=0.1. The wave packets are equally scaled for all considered
times. Additionally, the hierarchical structure of the approximant
C9

Ag is visualized by showing the occurrence of the patterns of C8
Ag

and C7
Ag in the chain.
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FIG. 5. Comparison of energy levels obtained by the
perturbation-theory approach and by numerical diagonalization of
the perturbed Hamiltonian H. Results are shown for the octonacci
chain with n=2, a=6, and �a� v=0.1 or �b� v=0.2. For reasons of
symmetry only energy values E�0 are included.
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While Fig. 6 shows results for only one iterant of the three
considered models, we have also compared the results for
Psn+1 of smaller and higher approximants to see whether
there is any systematic deviation from the shown values. We
found that, although there are much less states for smaller
systems or many more states for larger approximants, the
values of Psn+1 do not shift systematically for almost all of
the states. Instead, the additional points cluster in the same
way as in Fig. 6.

This supports the possibility that eigenstates for an infinite
quasicrystalline chain remain ergodic even for very small
values of v. This is in disagreement with the results of the
Raleigh-Schrödinger perturbation expansion of degenerate
levels, which might, nevertheless, still be accurate in the
limit as v→0 since

Psn+1�Ei� →
v→0�1 if Ei is caused by sn+1 clusters

0 if Ei is caused by sn clusters
� ,

which is a necessary condition but not a sufficient one.

V. ERGODICITY AND INFLUENCE OF AN
IMPURITY

Although the eigenstates remain ergodic even for weak
coupling v, the wave packet dynamics are strongly influ-

enced, as outlined in Sec. III. This leads to interesting con-
sequences when a single impurity of strength u is placed at a
site l� by changing a diagonal element of the Hamiltonian,
i.e., H�= 	l�
u�l�	. At first we study the spreading of wave
packets in the presence of such an impurity at different types
of clusters and then present results for the maximum wave
packet width when the impurity is placed at or near the initial
position of the wave packet.

In the first situation we performed several numerical ex-
periments for various initial positions of the impurity and of
the wave packet for different values of u. We found that for
large u the impurity acts as a barrier, effectively cutting the
chain into two halves. The consequence is that the wave
packet is reflected at the impurity independently of its initial
site, even if the coupling v is small. For u→0, on the other
hand, the unperturbed wave packet propagation of the case
u=0 is restored.

Understanding the wave packet propagation in the regime
of intermediate values of u, however, poses significant chal-
lenges and surprising results.27 A common situation is shown
in Fig. 7 for the silver mean model, where the wave packet is
initially localized at an sss cluster and the impurity u is
placed either on an ss or sss cluster near the center of chain.
In this case the evolution of the wave packet exhibits high
sensitivity on the position of the impurity, approaching two
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FIG. 6. �Color online� Probability Psn+1�E� that a particle in an eigenstate with a given energy E is on the sn+1 sublattice, for v
=0.0,0.1, . . . ,0.9. Only states with E0 are shown due to the symmetry of the eigenstate spectrum with respect to E=0. Results are given
for �a� the golden mean model C19

Au with 6765 sites, �b� the silver mean model C11
Ag with 8120 sites, and �c� the bronze mean model C8

Bz with
5117 sites. Note that there are a few additional states not included in the perturbation-theory approach, which are caused by the boundary
conditions.
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quite different stationary states. In particular, while in Fig.
7�a� the final state is just slightly perturbed from the final
state for u=0, in Fig. 7�b� most parts of the wave packet are
reflected and only a small amplitude can leak through the
barrier. This kind of wave packet dynamics is a consequence
of the nearly nonergodic spreading of the eigenstates for the
two different types of clusters for small v as discussed above
�cf. Fig. 6�. The explanation is that the wave packet is con-
structed by a superposition of all eigenstates and because it is
initially localized on an sn+1 cluster, eigenstates caused by
this type of cluster are contributing with a much higher prob-
ability than the eigenstates of the sn clusters. Consequently,
the impurity is felt as a barrier by the wave packet when
placed on the same type of cluster as the initial position of
the wave packet.

In the second situation we address the influence of an
impurity placed at or near the initial site of the wave packet
on the dynamics by studying the dependence of the final
wave packet width on the impurity strength u. Figure 8
shows the maximum value of d�t� attained in the course of
the evolution of a wave packet in the octonacci chain, which
was initially localized at the site l0= �fa /2�. Here only sys-
tems Ca

Ag with odd a and with the impurity placed at the
initial site of the wave packet or its left neighbor site are
shown. To obtain these maximum values of the width we
perform the calculations as in Fig. 1, but now for the per-
turbed system and different values of the impurity strength u
up to very large times, where the system is governed by
finite-size effects and d�t� becomes constant.

The results show that, for small u, the width of the wave
packet equals the results for the unperturbed system for both
positions of the impurity. For large u, we obtain a strongly
localized final wave packet when the impurity is added at the
initial site l0 of the wave packet and a constant width of the
wave packet when placing the impurity at the left neighbor
site l0−1. In the first case, the expansion of the wave packet
in the eigenstate basis is dominated by strongly localized
wave functions caused by the large impurity u and the wave
packet can no longer spread across the chain. In the latter
case, the impurity acts as a barrier placed at the center of the
chain, and consequently the wave packet is reflected and
only spreads across one half of the system as in Fig. 7�b�,
and d�t� reaches a plateau in Fig. 8. Nevertheless, the width
d�t� is reduced compared to an unperturbed system with half
the system size because in the presence of an impurity al-
ways some localized eigenstates, which do not spread across
the quasiperiodic chain, occur and contribute to the expan-
sion of the wave packet.

However, in between these two extremes there is a wide
range of values of u for which the final width of the wave
packet is significantly reduced even for u	v, signaling dy-
namical localization. There are nevertheless several well-
defined peaks in Fig. 8 for some values of u at which the
maximum wave packet width is significantly enhanced, com-
pared to the cases of slightly smaller and slightly larger val-
ues of u. These peaks persist for different system sizes and
for different positions of the impurity u, although the posi-
tions and structure of the peaks can change. Figure 8 shows
that the peaks for the four systems considered there occur at
the same strength of the impurity, especially for relatively
large values of u.

Having a closer look at the eigenstates caused by the im-
purity, we found that those peaks appear at impurities u,
where at least some of these perturbed states coincide with
the bands in the energy spectrum of the quasiperiodic ap-
proximants shown in Fig. 6. In this case the states caused by
the impurity hybridize with the unperturbed states of this
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site(b)

site(a)

FIG. 7. �Color online� Snapshots of the evolution of two wave
packets in the presence of an impurity for the octonacci chain with
n=2, a=8, and v=u=0.1. The wave packet is initially localized on
a large cluster in a local environment ·�wsxssw�· at the site x. In the
two panels �a� and �b� the impurity is located on a small cluster or
a large cluster in a local environment ·�wsbsswsaswsssw�· at the
sites indicated by a and b, respectively, as visualized by a vertical
line in each panel. For easier comparison, the vertical dashed line in
each panel marks the position of the impurity in the other panel.
The long-time wave packet dynamics exhibit high sensitivity on
whether the impurity is located on the same type of cluster or not as
the one on which the wave packet was initially localized.
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band and consequently the wave packet is able to spread
along the chain easier. This also explains the differences of
the peaks for a=7 and 9 in Fig. 8, because the structure of
the energy spectrum of the ninth approximant is more com-
plicated and thus additional peaks occur.

Further, in Fig. 9 we compare the maximum widths of the
wave packet for impurities placed at the first left neighbor
and the third left neighbor in systems Ca

Ag with even a. It is
clearly visible that the maximum widths of the wave packet
for these systems are almost identical for the two different
positions of the impurity. The reason is that the impurities
are in both cases located at the edges of the ss cluster, which
is adjacent to the cluster, where the wave packet is initially
localized. In contrast the curve of the approximant C9

Ag shows
a completely different behavior, because here the wave
packet is located in a different local environment in the be-
ginning.

Further, by repeating similar numerical experiments for
various values of the coupling strength v, we found that the
peak structure becomes less distinct with increasing v. For
the silver mean model we observed that it persists up to v
�0.4. For this value of v the widths of the energy bands
become smaller than the gaps between them, which in turn
means that the impurity-related eigenstates coincide very of-
ten with the energy bands and thus peaks merge so that al-
most no valleys occur.

These results show that in quasiperiodic quantum wires
one can strongly influence the long-range electronic-
transport properties by inducing local perturbations at differ-
ent positions and of various strengths. The characteristics are
related to the nature of the eigenstates, which spread only
across one type of cluster in the limit v→0. Knowing the
structure of the energy bands and of the eigenstates allows
one to design quasiperiodic chains with impurities that can
act as sort of control gates.

VI. CONCLUSION

In this paper, we considered the electronic transport in
one-dimensional quasiperiodic chains consisting of two
types of clusters which are weakly coupled by a hopping
parameter v. The investigations of the wave packet dynamics
revealed the occurrence of a stepwise process with time in-
tervals of power-law growth, followed by a regime with con-
fined wave packet width. Nevertheless, the average wave
packet dynamics can be classified as anomalous diffusion.
These results are consistent with the literature.20,23,28 The
stepwise behavior is caused by the hierarchical structure of
the chains, leading to the confinement of the wave packet
until it expands fast to reach the next level of the hierarchy.

The perturbation-theory approach allowed us to draw a
connection between the structure of the weakly coupled clus-
ters and the localization characteristics of the eigenfunctions
�, which only become delocalized in sufficiently high orders
of the perturbation expansion. This happens when clusters of
a specific type become connected, i.e., in order n+1 of the
expansion for large clusters and in the second or third order
for small clusters.

However, while we obtained that the eigenfunctions
spread ergodically over all clusters of the chain for v�0, in
the limit v→0 we found that ergodicity is broken and the
eigenfunctions can only spread across clusters of the same
type. The latter case has a significant influence on the long-
term wave packet dynamics in the presence of local pertur-
bations. We showed that the initial site determines whether
the wave packet is reflected at the impurity or whether it can
tunnel through the impurity, and that the maximum width of
the wave packet is affected by the strength and the position
of the impurity. This behavior might be used to construct
control gates for the electronic transport in quasiperiodically
modulated quantum wires.

Further research is planned in the following directions. It
is intended to consider the properties of more complex
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FIG. 8. �Color online� Maximum width of a wave packet at-
tained during its evolution in the presence of a single impurity of
strength u for the octonacci chain with n=2 and v=0.1. The wave
packet is initially localized at the center of the chain x= l0 in the
local environment ·�wsswsu1

sxswssw�· and the impurity is either
placed at the same site u0=x or its left neighbor site u1. Note that
we only included approximants Ca

Ag with odd a because for even a
the local environment of the initial position of the wave packet is
different.

100

101

102

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

m
ax

im
um

w
id

th
d(

t)

strength of impurity u

a = 6, impurity at site u1
a = 8, impurity at site u1
a = 6, impurity at site u3
a = 8, impurity at site u3
a = 9, impurity at site u3

FIG. 9. �Color online� Same as Fig. 8, but for even a with the
impurity of strength u located at the first and third left neighbors.
The wave packet is initially localized at the center x= l0 of the chain
in the local environment ·�wssswu3

ssu1
wxsswsssw�·.
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systems, as e.g., the associated labyrinth tilings in two and
three dimensions. Further, instead of investigating an on-site
disorder it would be also interesting to study the influence of
phason disorder caused by exchanging certain strong and
weak bonds.
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